Skip to main content

How Solar Panels Harness Clean Energy for a Sustainable Future

 How Solar Panels Harness Clean Energy for a Sustainable Future

Solar panels can power an incredible range of applications — from a remote cabin to keeping the lights on in the International Space Station. But we all know solar isn’t just for providing remote power needs. 

There’s virtually unlimited reasons why people choose to go solar. From energy independence, to reducing energy bills, to climate concerns, there’s really no “wrong” reason to install panels. And as solar panels continue to drop in price, they’ve become a competitive energy option for more and more homes and businesses.





Before we get into more details, let’s look at a high-level rundown of what happens from Sun-to-plug in a photovoltaic system:

  1. Photovoltaic cells absorb photons from the Sun and converts them to direct current (DC) electricity
  2. An inverter transforms direct current to alternate current (AC) to power appliances
  3. AC current travels via wire to a breaker box for distribution throughout the building
  4. Any unused electricity flows back into the utility grid or into solar energy storage




  5. What is solar energy

  6. Solar energy is radiant light and heat emitted from the Sun. It’s harvested in myriad ways, such as photosynthesis in plants and solar heating.

    Solar energy for electrical production relies on subatomic particles called photons. These particles start their journey in the center of the Sun, traveling through the various layers before careening into space. A journey from the center of the Sun to the surface can take anywhere between 100,000 to 50 million years to complete.

    Once photons escape the Sun, they take a little over 8 minutes to reach Earth, where they collide with solar panels and initiate the photovoltaic effect.

  7. The photovoltaic effect

  8. A solar panel’s secret sauce lies in its ability to convert photons into electrons. In a nutshell, a solar panel converts photons into direct current, which is then converted to alternate current for use in home and business applications.

    Solar cells are typically constructed of silicon, a semiconductor capable of producing electricity. When sunlight strikes the panel, photons interact with silicon atoms, releasing electrons in a phenomenon called the photovoltaic effect.

  9. A solar cell is manufactured with a positive and negative silicon sheet sandwiched together. An upper silicon layer is infused with phosphorus for a negative charge, and a boron-infused bottom layer maintains a positive charge. The resulting field funnels electrons towards conductive metal and out of the panel.

  10. Grid connection

  11. Once the photovoltaic process produces a current, the electricity has to flow somewhere. Since the current produced by a solar panel is DC, it needs to be converted into AC before it can be used in most situations. Once converted to AC, energy from solar can be used in multiple ways.

    The most common method is entry into a grid-tied system. A grid-tied system draws a significant portion of its energy needs from solar panels during the day. Depending on the size of the system, more energy may be produced than the site needs, so surplus electricity is sent back to the grid. When the Sun goes down, the consumer draws supplemental energy from the utility.

    While grid-tied systems aren’t completely self-sufficient, they’re an effective way to lower energy bills and do good for the environment.

  12. Net metering

  13. A major advantage of a grid-tied system is the ability to sell surplus solar energy back to the utility through a process called net metering (NEM). On cloudy days and during the night, a solar system may not produce enough energy to meet demand. The opposite is true for very sunny days: When energy use is low but production is high, panels will collect surplus energy, usually more than enough for a customer’s energy needs.

    Net metering measures electrical flow in both directions: How much energy a system draws from the utility, and how much is put in. When a solar system is overproducing, the meter actually runs backward, resulting in the utility company rewarding credits for the surplus power.

    These credits can be used to purchase energy from the utility when a solar system isn’t able to meet demand.

Comments

Popular posts from this blog

What is the smallest 8 cylinder engine?

 When people talk about engines, the V8 configuration frequently conjures images of powerful trucks, high-performance sports cars, and roaring muscle cars. Large displacement and tremendous power aren't typically associated with V8 engines, though. Over the years, manufacturers and engineers have developed incredibly compact V8 engines for a range of specific applications. These engines demonstrate the accuracy and inventiveness of contemporary engineering. Let's explore the intriguing realm of the tiniest V8 engines ever made   What Defines a "Small" V8 Engine? Displacement, power output, and intended use must all be taken into account in addition to physical dimensions when defining a "small" V8 engine. The entire amount of gasoline and air that the engine's cylinders can hold is known as displacement, and it is commonly expressed in liters or cubic centimeters (cc). Compared to the standard 4.0 to 6.0-liter V8s seen in normal cars, a small V8 engine t...

How to Make a Steam Engine Working Model

  How to Make a Steam Engine Working Model A great practical project that blends science, engineering, and creativity is building a working model of a steam engine. This tutorial will show you how to build a simple steam engine that illustrates the fundamentals of steam power using easily accessible materials. Materials Needed Small tin can or metal container (for the boiler) Copper tubing (approximately 1/4-inch diameter) Small piston or syringe (to act as the engine's cylinder) Wooden or metal base (for mounting components) Alcohol burner or tea light candle (as a heat source) Small flywheel (can be made from a toy car wheel or similar object) Rubber tubing (optional, for connecting components) Epoxy glue or soldering kit Drill and bits Safety goggles and gloves Easy-to-follow directions 1. Understand the Principles Learn how a steam engine operates before you start construction. When water is heated, steam is created, which expands and powers a piston in a steam engine. B...

Getting Started: The Prospects for Automotive Innovation

Getting Started: The Prospects for Automotive Innovation Revving Up: The Future of Automotive Innovation  Demands for sustainability, changing consumer expectations, and technology breakthroughs are all contributing to the automotive industry's dramatic transition. A number of significant themes are influencing the direction of automotive innovation as we prepare for the future. 1. Electric Vehicles (EVs) on the Rise At the vanguard of automotive innovation are electric automobiles. The transition to electric vehicles (EVs) is speeding up as a result of governments' demands for greener alternatives and consumers' growing environmental consciousness. To improve range and shorten charging times, major automakers are making significant investments in electric technology, diversifying their product lines, and creating more effective batteries. It is anticipated that advancements in solid-state batteries and charging infrastructure would increase EVs' viability and make them...

Miniature 8-cylinder engine in operation

  Working miniature 8-cylinder engine The Intriguing World of Miniature 8-Cylinder Engine Operation The intricacy and strength of conventional V8 engines are combined into compact, useful models in miniature 8-cylinder engines, which are a true engineering marvel. Both engineers and enthusiasts are drawn to these tiny engines because they are the epitome of mechanical creativity and fine craftsmanship. The design, applications, and reasons why working miniature 8-cylinder engines have grown in popularity among model builders and collectors will all be covered in this article. What is an 8-cylinder miniature engine? An actual V8 engine is shrunk down to create a small 8-cylinder engine. Usually built to run on a variety of fuels, including compressed air or gasoline, these engines may simulate the firing patterns, exhaust noises, and moving parts of full-size V8 engines. They are frequently constructed as functional models, which means that the engine functions and runs much like...

how to make electronic component tester at home

 How to Test Electronic Components at Home: A Comprehensive Guide To make sure circuits work as intended, testing electronic components is crucial for both experts and enthusiasts. You can measure and check resistors, capacitors, diodes, and transistors with the use of a component tester. Although there are many commercial testers available, it is more economical and instructive to create your own. Here's how to make your own at-home electronic component tester. Why Build a Tester for Electronic Components? Affordability: Purchasing a pre-made device is frequently more expensive than a do-it-yourself testing. Customization: Make it to test the particular parts you use most frequently. Possibility for Learning: Expand your knowledge of circuitry and electronics. Portability: Create a small, lightweight design for diagnostics that can be done on the fly. Things You'll Need Essential Elements: Microcontroller: Raspberry Pi Pico, ESP32, or Arduino (Uno, Nano, or Pro Mini). Display:...